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Abstract

Landslides are among the most frequent and
devastating natural hazards, often resulting in
significant loss of life, property damage and disruption
to infrastructure and agriculture. As a serious geo-
environmental issue, landslides present complex
challenges for both prediction and control. Landslide
Susceptibility Mapping (LSM) has emerged as a
valuable tool for identifying high-risk areas and
supporting disaster mitigation strategies. In recent
years, numerous researchers have applied geospatial
technologies in combination with statistical methods
and machine learning techniques to enhance the
accuracy of LSM. Review papers play a crucial role in
helping researchers and academicians to identify
knowledge gaps and to evaluate existing methodologies
by synthesizing findings from previous studies. This
review is based on a comprehensive collection of
research studies focused on LSM using geospatial and
machine learning approaches, aiming to provide
insights into current practices and future research
directions. The analysis reveals that machine learning
models, particularly Random Forest (RF), Support
Vector Machine (SVM) and Gradient Boosting
Decision Trees (GBDT), consistently outperform
traditional statistical methods like Logistic Regression
(LR) and Frequency Ratio (FR) in predictive accuracy.

Studies have reported AUC values exceeding 0.95 for
RF models, indicating excellent predictive capabilities
in various geographical contexts. Furthermore, the
integration of Bayesian optimization techniques has
enhanced model performance, with improvements in
prediction accuracy up to 7% for GBDT models.
Hybrid models, combining algorithms such as SVM
with metaheuristic optimization methods, have also
demonstrated superior performance, effectively
capturing complex, nonlinear relationships inherent in
geospatial data. In conclusion, the adoption of
advanced machine learning and hybrid models has
significantly improved the accuracy and reliability of
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LSM. These methodologies offer robust tools for
disaster risk management, enabling more effective
identification of high-risk areas and informing
mitigation strategies. Future research should focus on
enhancing model interpretability and integrating real-
time data to further refine susceptibility assessments
and support proactive landslide risk reduction efforts.

Keywords: Statics Model, Machine learning Models,
Geospatial Technology.

Introduction

Landslides are among the most common natural hazards,
causing significant loss of life and economic damage®*. They
occur when gravitational forces overcome the resisting
strength of earth materials on a slope®. As severe geo-
hazards, landslides extensively impact both the built
environment and natural ecosystems®, damaging
infrastructure such as highways, pipelines and buildings,
resulting in over 400 deaths annually worldwide??. Globally,
landslides are responsible for substantial damage, causing an
estimated 56,000 deaths across 4,900 fatal events between
2004 and 2016, resulting in approximately $20 billion
economic losses annually.

In India, landslides represent a major hazard, accounting for
about 18% of global landslide incidents during the same
period. Approximately 12% of India's land area is vulnerable
to landslides, particularly in the Himalayan region and the
Western Ghats. Kerala, located in the Western Ghats, is one
of the most landslide-prone states, recording 2,239
landslides between 2015 and 2022, which account for nearly
59.2% of all reported landslides in India during that period.
In 2024, the Wayanad district experienced a devastating
landslide event resulting in significant displacement,
infrastructure damage and economic losses, highlighting the
increasing vulnerability of the region to such geo-
environmental hazards.

It is asserted that although landslide prediction remains a
complex process due to variations across both space and
time, it is possible to categorize regions into homogeneous
zones based on landslide probability. By analyzing
geological, geomorphological, hydrological and climatic
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factors, areas prone to similar levels of landslide risk can be
systematically identified. This zoning approach enables
better risk management, targeted mitigation efforts and
informed land-use planning in vulnerable regions.

In recent years, the increased availability of Geographic
Information Systems (GIS) and Remote Sensing (RS) data
has opened new avenues for landslide analysis and risk
reduction!®20, The advanced progress of GIS technologies
offers an effective means to systematically collect, manage,
organize, extract and analyze local terrain and climatic
conditions®. Modern machine learning (ML) algorithms, in
particular, leverage the comprehensive information stored in
GIS databases to create highly accurate mapping
correlations that predict landslide susceptibility®2,

Since the early 2000s, the application of machine learning
algorithms for GIS-based landslide modeling has gained
considerable  momentum*®.  To  assess landslide
susceptibility, researchers have traditionally adopted three
major categories of techniques: heuristic, statistical and
deterministic methods®. Due to their ability to handle
nonlinear relationships and multivariate datasets which are
common in landslide studies, machine learning models
including decision trees, support vector machines, random
forests and deep learning techniques, have become
increasingly popular and effective tools*. These advanced
approaches significantly enhance the accuracy and
reliability of landslide hazard assessments.

Effective  GIS-based  statistical analyses  require
comprehensive data on past landslides, preparatory factors
and triggering conditions. Identifying and assessing
landslide-prone areas are critical for developing effective
strategies to prevent or mitigate potential damage. This
process greatly benefits from the use of remote sensing and
GIS-derived thematic layers.

Key layers commonly employed in landslide susceptibility
mapping include Digital Elevation Model (DEM), elevation,
slope, aspect, plan curvature, profile curvature, lithology,
geological age, faults, roads, rivers, Stream Power Index
(SPI), Sediment Transport Index (STI), Topographic
Roughness Index (TRI), Topographic Wetness Index (TWI),
land cover, Normalized Difference Vegetation Index
(NDVI) and precipitation. These factors are widely
recognized as essential conditioning parameters and are
frequently used as input layers in various studies. The
number and type of layers utilized vary across studies
depending on data availability and specific research
objectives. For instance, Rong et al’® and Hong et al*>% used
18 layers, Wei et al® included 12 layers, Shano et al’®7” used
8 layers, Jennifer et al®* considered 13 layers and Azarafza
et al*®'! employed 17 layers in their respective analyses.

Despite variations in the selection of conditioning factors

across different studies, certain thematic layers such as
slope, lithology, land use/land cover (LULC), drainage
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density and proximity to faults, are widely recognized and
utilized in landslide susceptibility mapping. The choice of
these layers often depends on the specific objectives of the
study and the availability of data as evidenced by various
researchers listed in table 1.

Methodology: In the realm of Landslide Susceptibility
Mapping (LSM), a diverse array of computational models
has been employed, broadly categorized into Statistical
Methods, Artificial Intelligence/Machine Learning (Al/ML)
Methods and Hybrid Methods. Statistical approaches, such
as Logistic Regression (LR) and Frequency Ratio (FR), have
been included in LSM due to their simplicity and
interpretability. These methods facilitate the quantification
of relationships between landslide occurrences and
conditioning factors, offering insights into the contributing
variables. However, their linear nature may limit the capture
of complex, nonlinear interactions inherent in geospatial
data.

To address these complexities, AI/ML techniques have
gained prominence. Models like Support Vector Machines
(SVM), Random Forests (RF) and Artificial Neural
Networks (ANN) excel in handling high-dimensional
datasets and modeling intricate, nonlinear relationships
between multiple conditioning factors and landslide
occurrences. For instance, RF models have demonstrated
high accuracy in various studies, effectively managing
overfitting and providing robust predictions.

Similarly, SVMs are renowned for their generalization
capabilities, especially in scenarios with limited training
data. These AI/ML methods leverage historical landslide
inventories and conditioning factors to learn patterns and
predict susceptibility with enhanced precision. The selection
and integration of these methodologies in this study are
informed by the specific objectives and data availability,
aiming to enhance the accuracy and reliability of the
landslide susceptibility maps produced. The models utilized
by various researchers, as detailed in table 2, underscore the
diverse methodological approaches adopted in the field of
LSM.

Discussion

Here we discuss the results of various researchers
concerning Landslide Susceptibility Mapping (LSM)
models. Rong et al”® conducted a study comparing Random
Forest (RF) and Gradient Boosting Decision Tree (GBDT)
models, both before and after Bayesian optimization. The
results demonstrated that all proposed models achieved high
accuracy suitable for LSM applications. Notably, the
performance of RF surpassed that of GBDT without
Bayesian optimization. However, after applying Bayesian-
optimized hyperparameters, the prediction accuracy of RF
and GBDT models improved by 1% and 7% respectively
with the Bayesian-optimized GBDT model emerging as the
most effective among the four models evaluated.
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Four bivariate models were compared: Evidential Belief
Function (EBF), Weights of Evidence (WoE), Shannon
Entropy (SE) and Frequency Ratio (FR). The Area Under the
Curve (AUC) results indicated success rates of 0.80, 0.86,
0.84 and 0.85 for EBF, WoE, SE and FR respectively. In
terms of prediction rates, WoE achieved 0.84, followed by
FR at 0.83, SE at 0.82 and EBF at 0.79. Consequently, the
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WoE model, having the highest AUC, was identified as the
most accurate method among the four implemented for
identifying regions at risk of future landslides. Wei et al®
evaluated four ensemble models: Extreme Gradient
Boosting (XGBoost), Bagging, Gradient Boosting Decision
Trees (GBDT) and Adaptive Boosting (AB).

Table 1
Data sets considered by various researchers
Layers Resolution
DEM Downloaded from websites30-33:35.48.76.77.84,86 12.5m
30m
25m

E|evationlO,11,32-34,70-72,76,77,85,86

S|Ope10,ll,32-34,70-72,76,77,85,86

Aspect32-34,70-72,76,77,85,86

Plan curvature32:33.70-72

Profile curvatu relO,11,32,33,70—72,85,86

Litho|Ogy32,33,70—72,85,86

Geological age3*70-72.76.77

Fau |t510,ll,32,33,70—72,76,77,85,86

ROad510,11,32-34,70-72,85,86

R iverSlO,ll,32,33,70-72

Sp|32—34,70—72

ST|32,33,70-72

TR |32,33,70—72

TW|32—34,70—72,85,86

Landcove r32-34,70-72,76,77,85,86

N DV|32,33,70—72,85,86

Precipitation32-3470-72.8586

Table 2
Various methodologies considered by several researchers

Category Technigues/Methods
Statistical Evidential Belief Function (EBF)19:21.244687
Methods Weights-of-Evidence (WoE)®1213,50,58,68

Likelihood Ratio (LR)36:3940.81

Frequency Ratio (FR)*-4361L75.91

Information Value (InV) Model 1.7478.88

Logistic Regression (LR)37:45:80.90

Discriminant Analysis®26

Bayesian Probability*42777

Certainty Factor (CF)7°#3

Analytic Hierarchy Process (AHP)*2556.57.6263,92

Al/ML Methods

Random Forest (RF)

Decision Trees (DT)®

Support Vector Machine (SVM)?28.60

Naive Bayes (NB)*>°9

Bayesian Networks (BN)7:70-72.82

Atrtificial Neural Networks (ANNs)647

Maximum Entropy (MaxEnt)!%

Other/Hybrid Methods

Fuzzy Logic 2351:6667.94

Index-based Methods

Data Overlay Techniques

Expert Systems and Knowledge-Driven Approaches
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All models achieved an AUC greater than 0.8, indicating
their suitability for accurate landslide susceptibility
mapping. Among them, the XGBoost model demonstrated
the best performance, with a sensitivity of 92.86%,
specificity of 90.00% and accuracy of 91.38%. The Bagging
model followed with a sensitivity of 89.29%, specificity of
86.67% and accuracy of 87.93%, outperforming GBDT and
AB models. Jennifer et al** applied Frequency Ratio (FR)
and Logistic Regression (LR) models to assess landslide
susceptibility in the Nilgiris District, Tamil Nadu, India.

The results indicated that approximately 8.78% and 23.22%
of the study area were classified as very high landslide
susceptibility zones based on the FR and LR models
respectively. Mersha and Meten® conducted a study in the
Simada area, northwestern Ethiopia, utilizing FR and WoE
models. The predictive rates achieved were 88.2% for the FR
model and 84.8% for the WoE model, indicating that the FR
model exhibited better performance in landslide
susceptibility mapping. Deng et al employed the r.slopeunits
method to extract slope units and applied the Information
Value-Random Forest (IV-RF) model for landslide
susceptibility assessment. Their results showed that under
optimal parameters, the model achieved an AUC of 0.905
and an F1 score of 0.908, indicating high internal
homogeneity and external heterogeneity in the slope units.
The model's performance, validated through AUC-ROC and
statistical parameters such as precision, recall, accuracy and
F-score, demonstrated a good degree of adjustment and
acceptable predictive capacity.

Conclusion

Based on the comparative analysis of various landslide
susceptibility mapping (LSM) models, it is evident that
while traditional statistical methods like Frequency Ratio
(FR) and Logistic Regression (LR) provide foundational
insights, they often fall short in capturing the complex,
nonlinear relationships inherent in geospatial data. Machine
learning (ML) models, particularly Random forest (RF) and
Gradient Boosting Decision Trees (GBDT), have
demonstrated superior predictive capabilities. Notably, the
integration of Bayesian optimization techniques has further
enhanced the performance of these models, with studies
indicating improvements in prediction accuracy by up to 7%
for GBDT models. These advancements underscore the
importance of model optimization in achieving more
accurate and reliable LSM outcomes.

Furthermore, the emergence of hybrid models that combine
the strengths of different algorithms, has shown promising
results in LSM applications. For instance, the integration of
Convolutional Neural Networks (CNN) with RF and Cat
boost has led to improved accuracy and robustness in
susceptibility mapping. These hybrid approaches effectively
address the limitations of individual models by capturing
both spatial features and complex decision boundaries. As
the field progresses, the adoption of such ensemble and
hybrid methodologies is likely to play a pivotal role in
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enhancing the precision and applicability of LSM, thereby
contributing to more effective disaster risk management and
land-use planning strategies.
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