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Abstract 
Landslides are among the most frequent and 

devastating natural hazards, often resulting in 

significant loss of life, property damage and disruption 

to infrastructure and agriculture. As a serious geo-

environmental issue, landslides present complex 

challenges for both prediction and control. Landslide 

Susceptibility Mapping (LSM) has emerged as a 

valuable tool for identifying high-risk areas and 

supporting disaster mitigation strategies. In recent 

years, numerous researchers have applied geospatial 

technologies in combination with statistical methods 

and machine learning techniques to enhance the 

accuracy of LSM. Review papers play a crucial role in 

helping researchers and academicians to identify 

knowledge gaps and to evaluate existing methodologies 

by synthesizing findings from previous studies. This 

review is based on a comprehensive collection of 

research studies focused on LSM using geospatial and 

machine learning approaches, aiming to provide 

insights into current practices and future research 

directions. The analysis reveals that machine learning 

models, particularly Random Forest (RF), Support 

Vector Machine (SVM) and Gradient Boosting 

Decision Trees (GBDT), consistently outperform 

traditional statistical methods like Logistic Regression 

(LR) and Frequency Ratio (FR) in predictive accuracy.  
 

Studies have reported AUC values exceeding 0.95 for 

RF models, indicating excellent predictive capabilities 

in various geographical contexts. Furthermore, the 

integration of Bayesian optimization techniques has 

enhanced model performance, with improvements in 

prediction accuracy up to 7% for GBDT models. 

Hybrid models, combining algorithms such as SVM 

with metaheuristic optimization methods, have also 

demonstrated superior performance, effectively 

capturing complex, nonlinear relationships inherent in 

geospatial data. In conclusion, the adoption of 

advanced machine learning and hybrid models has 

significantly improved the accuracy and reliability of 

LSM. These methodologies offer robust tools for 

disaster risk management, enabling more effective 

identification of high-risk areas and informing 

mitigation strategies. Future research should focus on 

enhancing model interpretability and integrating real-

time data to further refine susceptibility assessments 

and support proactive landslide risk reduction efforts. 
 

Keywords: Statics Model, Machine learning Models, 

Geospatial Technology. 

 

Introduction 
Landslides are among the most common natural hazards, 

causing significant loss of life and economic damage84. They 

occur when gravitational forces overcome the resisting 

strength of earth materials on a slope88. As severe geo-

hazards, landslides extensively impact both the built 

environment and natural ecosystems30, damaging 

infrastructure such as highways, pipelines and buildings, 

resulting in over 400 deaths annually worldwide32. Globally, 

landslides are responsible for substantial damage, causing an 

estimated 56,000 deaths across 4,900 fatal events between 

2004 and 2016, resulting in approximately $20 billion 

economic losses annually.  

 

In India, landslides represent a major hazard, accounting for 

about 18% of global landslide incidents during the same 

period. Approximately 12% of India's land area is vulnerable 

to landslides, particularly in the Himalayan region and the 

Western Ghats. Kerala, located in the Western Ghats, is one 

of the most landslide-prone states, recording 2,239 

landslides between 2015 and 2022, which account for nearly 

59.2% of all reported landslides in India during that period. 

In 2024, the Wayanad district experienced a devastating 

landslide event resulting in significant displacement, 

infrastructure damage and economic losses, highlighting the 

increasing vulnerability of the region to such geo-

environmental hazards.  

 

It is asserted that although landslide prediction remains a 

complex process due to variations across both space and 
time, it is possible to categorize regions into homogeneous 

zones based on landslide probability. By analyzing 

geological, geomorphological, hydrological and climatic 
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factors, areas prone to similar levels of landslide risk can be 

systematically identified. This zoning approach enables 

better risk management, targeted mitigation efforts and 

informed land-use planning in vulnerable regions. 

 

In recent years, the increased availability of Geographic 

Information Systems (GIS) and Remote Sensing (RS) data 

has opened new avenues for landslide analysis and risk 

reduction18,20. The advanced progress of GIS technologies 

offers an effective means to systematically collect, manage, 

organize, extract and analyze local terrain and climatic 

conditions60. Modern machine learning (ML) algorithms, in 

particular, leverage the comprehensive information stored in 

GIS databases to create highly accurate mapping 

correlations that predict landslide susceptibility10,11.  

 

Since the early 2000s, the application of machine learning 

algorithms for GIS-based landslide modeling has gained 

considerable momentum4,5. To assess landslide 

susceptibility, researchers have traditionally adopted three 

major categories of techniques: heuristic, statistical and 

deterministic methods23. Due to their ability to handle 

nonlinear relationships and multivariate datasets which are 

common in landslide studies, machine learning models 

including decision trees, support vector machines, random 

forests and deep learning techniques, have become 

increasingly popular and effective tools49. These advanced 

approaches significantly enhance the accuracy and 

reliability of landslide hazard assessments.  

 

Effective GIS-based statistical analyses require 

comprehensive data on past landslides, preparatory factors 

and triggering conditions. Identifying and assessing 

landslide-prone areas are critical for developing effective 

strategies to prevent or mitigate potential damage.  This 

process greatly benefits from the use of remote sensing and 

GIS-derived thematic layers.  

 

Key layers commonly employed in landslide susceptibility 

mapping include Digital Elevation Model (DEM), elevation, 

slope, aspect, plan curvature, profile curvature, lithology, 

geological age, faults, roads, rivers, Stream Power Index 

(SPI), Sediment Transport Index (STI), Topographic 

Roughness Index (TRI), Topographic Wetness Index (TWI), 

land cover, Normalized Difference Vegetation Index 

(NDVI) and precipitation. These factors are widely 

recognized as essential conditioning parameters and are 

frequently used as input layers in various studies. The 

number and type of layers utilized vary across studies 

depending on data availability and specific research 

objectives. For instance, Rong et al70 and Hong et al32,33 used 

18 layers, Wei et al85 included 12 layers, Shano et al76,77 used 

8 layers, Jennifer et al34 considered 13 layers and Azarafza 

et al10,11 employed 17 layers in their respective analyses.  

 
Despite variations in the selection of conditioning factors 

across different studies, certain thematic layers such as 

slope, lithology, land use/land cover (LULC), drainage 

density and proximity to faults, are widely recognized and 

utilized in landslide susceptibility mapping. The choice of 

these layers often depends on the specific objectives of the 

study and the availability of data as evidenced by various 

researchers listed in table 1. 

 

Methodology: In the realm of Landslide Susceptibility 

Mapping (LSM), a diverse array of computational models 

has been employed, broadly categorized into Statistical 

Methods, Artificial Intelligence/Machine Learning (AI/ML) 

Methods and Hybrid Methods. Statistical approaches, such 

as Logistic Regression (LR) and Frequency Ratio (FR), have 

been included in LSM due to their simplicity and 

interpretability. These methods facilitate the quantification 

of relationships between landslide occurrences and 

conditioning factors, offering insights into the contributing 

variables. However, their linear nature may limit the capture 

of complex, nonlinear interactions inherent in geospatial 

data.  

 

To address these complexities, AI/ML techniques have 

gained prominence. Models like Support Vector Machines 

(SVM), Random Forests (RF) and Artificial Neural 

Networks (ANN) excel in handling high-dimensional 

datasets and modeling intricate, nonlinear relationships 

between multiple conditioning factors and landslide 

occurrences. For instance, RF models have demonstrated 

high accuracy in various studies, effectively managing 

overfitting and providing robust predictions. 
 

Similarly, SVMs are renowned for their generalization 

capabilities, especially in scenarios with limited training 

data. These AI/ML methods leverage historical landslide 

inventories and conditioning factors to learn patterns and 

predict susceptibility with enhanced precision. The selection 

and integration of these methodologies in this study are 

informed by the specific objectives and data availability, 

aiming to enhance the accuracy and reliability of the 

landslide susceptibility maps produced. The models utilized 

by various researchers, as detailed in table 2, underscore the 

diverse methodological approaches adopted in the field of 

LSM. 

 

Discussion 
Here we discuss the results of various researchers 

concerning Landslide Susceptibility Mapping (LSM) 

models. Rong et al70 conducted a study comparing Random 

Forest (RF) and Gradient Boosting Decision Tree (GBDT) 

models, both before and after Bayesian optimization. The 

results demonstrated that all proposed models achieved high 

accuracy suitable for LSM applications. Notably, the 

performance of RF surpassed that of GBDT without 

Bayesian optimization. However, after applying Bayesian-

optimized hyperparameters, the prediction accuracy of RF 

and GBDT models improved by 1% and 7% respectively 

with the Bayesian-optimized GBDT model emerging as the 

most effective among the four models evaluated.  
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Four bivariate models were compared: Evidential Belief 

Function (EBF), Weights of Evidence (WoE), Shannon 

Entropy (SE) and Frequency Ratio (FR). The Area Under the 

Curve (AUC) results indicated success rates of 0.80, 0.86, 

0.84 and 0.85 for EBF, WoE, SE and FR respectively. In 

terms of prediction rates, WoE achieved 0.84, followed by 

FR at 0.83, SE at 0.82 and EBF at 0.79. Consequently, the 

WoE model, having the highest AUC, was identified as the 

most accurate method among the four implemented for 

identifying regions at risk of future landslides. Wei et al84 

evaluated four ensemble models: Extreme Gradient 

Boosting (XGBoost), Bagging, Gradient Boosting Decision 

Trees (GBDT) and Adaptive Boosting (AB).  

 

Table 1 

Data sets considered by various researchers 

Layers Resolution 

DEM Downloaded from websites30-33,35,48,76,77,84,86 

 

12.5m 

30m 

25m 

Elevation10,11,32-34,70-72,76,77,85,86 

Slope10,11,32-34,70-72,76,77,85,86 

Aspect32-34,70-72,76,77,85,86 

Plan curvature32,33,70-72 

Profile curvature10,11,32,33,70-72,85,86 

Lithology32,33,70-72,85,86 

Geological age34,70-72,76,77 

Faults10,11,32,33,70-72,76,77,85,86 

Roads10,11,32-34,70-72,85,86 

Rivers10,11,32,33,70-72 

SPI32-34,70-72 

STI32,33,70-72 

TRI32,33,70-72 

TWI32-34,70-72,85,86 

Landcover32-34,70-72,76,77,85,86 

NDVI32,33,70-72,85,86 

Precipitation32-34,70-72,85,86 

 

Table 2 

Various methodologies considered by several researchers 

Category Techniques/Methods 

Statistical  

Methods 

Evidential Belief Function (EBF)19,21,24,46,87 

Weights-of-Evidence (WoE)9,12,13,50,58,68 

Likelihood Ratio (LR)36,39,40,81 

Frequency Ratio (FR)41,43,61,75,91 

Information Value (InV) Model 1,74,78,88 

Logistic Regression (LR)37,45,80,90 

Discriminant Analysis8,26 

Bayesian Probability14,27,77 

Certainty Factor (CF)79,83 

Analytic Hierarchy Process (AHP)1,25,56,57,62,63,92 

AI/ML Methods Random Forest (RF) 

Decision Trees (DT)87 

Support Vector Machine (SVM)28,60 

Naïve Bayes (NB)42,59 

Bayesian Networks (BN)17,70-72,82 

Artificial Neural Networks (ANNs)16,47 

Maximum Entropy (MaxEnt)15,65 

Other/Hybrid Methods 

  

  

  

Fuzzy Logic 2,3,51,66,67,94 

Index-based Methods 

Data Overlay Techniques 

Expert Systems and Knowledge-Driven Approaches 
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All models achieved an AUC greater than 0.8, indicating 

their suitability for accurate landslide susceptibility 

mapping. Among them, the XGBoost model demonstrated 

the best performance, with a sensitivity of 92.86%, 

specificity of 90.00% and accuracy of 91.38%. The Bagging 

model followed with a sensitivity of 89.29%, specificity of 

86.67% and accuracy of 87.93%, outperforming GBDT and 

AB models. Jennifer et al34 applied Frequency Ratio (FR) 

and Logistic Regression (LR) models to assess landslide 

susceptibility in the Nilgiris District, Tamil Nadu, India. 

 

The results indicated that approximately 8.78% and 23.22% 

of the study area were classified as very high landslide 

susceptibility zones based on the FR and LR models 

respectively. Mersha and Meten50 conducted a study in the 

Simada area, northwestern Ethiopia, utilizing FR and WoE 

models. The predictive rates achieved were 88.2% for the FR 

model and 84.8% for the WoE model, indicating that the FR 

model exhibited better performance in landslide 

susceptibility mapping. Deng et al employed the r.slopeunits 

method to extract slope units and applied the Information 

Value-Random Forest (IV-RF) model for landslide 

susceptibility assessment. Their results showed that under 

optimal parameters, the model achieved an AUC of 0.905 

and an F1 score of 0.908, indicating high internal 

homogeneity and external heterogeneity in the slope units. 

The model's performance, validated through AUC-ROC and 

statistical parameters such as precision, recall, accuracy and 

F-score, demonstrated a good degree of adjustment and 

acceptable predictive capacity.  

 

Conclusion 
Based on the comparative analysis of various landslide 

susceptibility mapping (LSM) models, it is evident that 

while traditional statistical methods like Frequency Ratio 

(FR) and Logistic Regression (LR) provide foundational 

insights, they often fall short in capturing the complex, 

nonlinear relationships inherent in geospatial data. Machine 

learning (ML) models, particularly Random forest (RF) and 

Gradient Boosting Decision Trees (GBDT), have 

demonstrated superior predictive capabilities. Notably, the 

integration of Bayesian optimization techniques has further 

enhanced the performance of these models, with studies 

indicating improvements in prediction accuracy by up to 7% 

for GBDT models. These advancements underscore the 

importance of model optimization in achieving more 

accurate and reliable LSM outcomes.  

 

Furthermore, the emergence of hybrid models that combine 

the strengths of different algorithms, has shown promising 

results in LSM applications. For instance, the integration of 

Convolutional Neural Networks (CNN) with RF and Cat 

boost has led to improved accuracy and robustness in 

susceptibility mapping. These hybrid approaches effectively 

address the limitations of individual models by capturing 

both spatial features and complex decision boundaries. As 

the field progresses, the adoption of such ensemble and 

hybrid methodologies is likely to play a pivotal role in 

enhancing the precision and applicability of LSM, thereby 

contributing to more effective disaster risk management and 

land-use planning strategies. 
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